Groundwater Issues in the Design, Operation, and Closure of Tailings, Waste Rock, and Heap Leach Facilities

Bernard Brixel, Jack Caldwell, & Christoph Wels

Robertson GeoConsultants Inc.

Consulting Engineers and Scientists for the Mining Industry www.robertsongeoconsultants.com

The Paper

- A review of groundwater issues related to mine waste facilities (MWF), including:
 - Seepage from Tailings Storage Facilities, Waste Rock Dumps and Heap Leach Pads
 - Downstream seepage interception
 - Post-closure seepage rates & potential long-term environmental impacts
- An overview of commonly used approaches for groundwater modelling in the context of mine waste facilities.

This Presentation

- Focus on the concept of groundwater modelling as a tool during design, operation and closure of mine waste facilities.
- Draws on the <u>Guidelines for</u> <u>Groundwater Modelling to Assess</u> <u>Impacts of Proposed Natural</u> <u>Resource Development Activities</u>, (RGC & SRK, 2012).
- Available at: http://www.rgc.ca/moe

Why Model?

- Scientific/Engineering tool:
 - Simulate interactions between groundwater and mine waste facilities in order to:
 - Assist in the design of mine waste facilities
 - Evaluate environmental impacts
- Regulatory tool:
 - Predict plausible system response(s) in support of:
 - Permit applications
 - Regulatory reviews
- Project Management tool:
 - Use model for decision making during mining

GW Modelling Process*

- Definition of objectives
- Data review
- Conceputalization
- Code selection
- Calibration & sensitivity analysis
- Predictions

* See BC MOE Modeling Guidelines for more details (Wels et al., 2012)

Model Selection Process (Flow)

Model Selection Process (Transport)

Modeling through the Life of a Project

Design/Permitting

- Establish the baseline hydrogeological regime in the proposed area of waste disposal (baseline model)
- Predict the future hydrogeological regime:
 - Mine waste seepage (recharge to aquifer)
 - Contaminant transport
 - associated impacts on downstream receptors
- Assist in the design of systems/structures:
 - water management
 - Tailings dam
 - toe cutoff/drainage systems
 - groundwater monitoring networks

Design/Permitting (Example)

Seepage Losses & Environmental Impact

Design/Permitting (Example)

Seepage Losses & Environmental Impact

- Important for:
 - Quantifying make-up requirements
 - Predicting contaminant loading to aquifer
- Requires knowledge of:
 - Deposition method
 - Process water discharge
 - Tailings/aquifer properties
 - Containment strategy
 - Drainage strategy

Design/Permitting (Example)

Seepage Losses & Environmental Impact (Sensitivity Analysis)

Mine Operation

- Describe observed groundwater impacts resulting from waste disposal activities (calibrated baseline model)
- Evaluate alternative seepage mitigation scenarios:
 - cutoff-wall
 - interceptor trench
 - pump & treat
 - Performance assessments:
 - dam seepage
 - seepage mitigations options

Mine Operation (Example)

Seepage Interception

Closure

- Predict the post-closure hydrogeological regime (groundwater rebound, seepage rates, water quality)
- Assist in the design of alternative closure options:
 - Cover design
 - Waste relocation (e.g. pit backfill)
 - Seepage interception
 - Trade-Off Studies

Closure (Example)

Cover Design & Long-term Impacts

Concluding comments

- Groundwater modelling is an important tool throughout the design, operation and closure of mine waste facilities
- The scope and objectives of models should always be tailored to the needs dictated by the stage of the project
- The BC MoE groundwater guidelines provide a framework to facilitate the application of groundwater modelling to mine waste disposal

